THEORY OF MOMENTS, HÜCKEL RULE AND STABILITY

Štěpán Pick
The J. Heyrovsk'́ Institute of Physical Chemistry and Electrochemistry, Czechoslorak Academy of Sciences, 18223 Prague 8

Received October 26th, 1987
Accepted January 27th, 1988

Dedicated to Dr R. Zahradnik on the occasion of his 60th birthday

The connection between moments of the electronic Hamiltonian and topology of a quantum mechanical system is studied. Based on simplifications similar to those usually employed in simple chemical and physical theories, criteria resembling the Hückel rule for cyclic conjugated systems are suggested. Several examples of interest in chemistry and solid state physics are discussed. No information on the wave function is necessary in the present approach.

The prediction of stable structures is one of the central problems both in chemistry and physics. At present, several criteria exist for which a symmetry analysis (group theory) is crucial. Contrary to rigorous results (the Jahn-Teller theorem ${ }^{1}$), most of these theories rely on an intuitive generalization of a fundamental idea (cf. the theory of the pseudo-Jahn-Teller effect ${ }^{2}$, the Landau theory of phase transitions ${ }^{3}$, etc.). Attempts to find a simple correlation between topology and stability were also undertaken ${ }^{1,4-7}$. Among them, the Hückel rule for cyclic conjugated systems ${ }^{1}$ is classical.

It is interesting to mention that a connection between topology and moments of the electronic Hamiltonian was stressed in the literature ${ }^{6}$. The use of moment methods is of an old date in solid state physics. Recently ${ }^{8,9}$, these methods became a powerful numerical tool for studying the electronic structure of solids. The moment analysis of simple models yields also interesting results ${ }^{10-12}$. Below, an attempt is made to link topology and moments together. The present study was inspired by comment ${ }^{13}$ on the paper ${ }^{14}$ and by numerical results obtained in ref. ${ }^{15}$.

THEORETICAL

In this section, selected definitions and results from the theory of moments and the one-electron theory of bonding are summarized.

For a one-electron Hamiltonian \mathbf{h} with eigenvalues E_{r}, we define the k-th order
moment of \mathbf{h} as

$$
\begin{equation*}
m_{k}=\sum_{j}\langle j| \mathbf{h}^{k}|j\rangle=\operatorname{Tr} \mathbf{h}^{k}=\sum_{r} E_{r}^{k}, k=0,1, \ldots \tag{1}
\end{equation*}
$$

For extended structures (crystals) with a continuous spectrum, it is convenient to introduce the density of states $\varrho(E)$, which is non-zero on the spectrum of h. In this case,

$$
\begin{equation*}
m_{k}=\int E^{k} \varrho(E) \mathrm{d} E \tag{2}
\end{equation*}
$$

When expressing $\varrho(E)$ as a sum of Dirac delta-functions $\delta\left(E-E_{r}\right)$, the identity (1) acquires the form (2). On the other hand, any continuous distribution $\varrho(E)$ can be approximated by a set of discrete energy levels leading to Eq. (1). As a rule, a limited number of such levels (corresponding to several points from the Brillouin zone or to a finite cluster) are sufficient to describe the most important features of the system correctly. In this case, any discrete level represents a set of states with similar properties.

Following refs ${ }^{\mathbf{1 0 , 1 1 , 1 6}}$, let us consider a continuous function $f(E)$ defined on the interval $J=(a, b)$. Supposing the moments $\mathrm{m}_{\mathrm{k}}(\mathrm{f})=\int \mathrm{E}^{\mathrm{k}} \mathrm{f}(\mathrm{E}) \mathrm{dE}$ vanish up to the $\operatorname{order}(\mathrm{n}-1)$, an interesting theorem holds true: f changes its sign at least n -times on J . Below, it will be useful to know that for the function $\mathrm{F}(\mathrm{E})$ defined on J as $\mathrm{F}(\mathrm{E})=\int_{\mathrm{a}}^{\mathrm{E}} \varepsilon \mathrm{f}(\varepsilon) \mathrm{d} \varepsilon$, moments up to the $(\mathrm{n}-3)$-th order are zero. Indeed, integrating by parts, one finds for $k=0, \ldots, n-3$

$$
\begin{equation*}
m_{k}(F)=\int E^{k} F(E) \mathrm{d} E=(k+1)^{-1}\left(b^{k+1} m_{1}(f)-m_{k+2}(f)\right)=0 . \tag{3}
\end{equation*}
$$

Consequently, F crosses zero at least $(n-2)$-times on J. Below, we refer to this result as to the (F, f)-theorem.

In one-electron theory of bonding, the electronic energy is expressed as the following sum of one-electron energies taken over occupied states (the factor 2 arises from the two spin orientations and ε is a constant)

$$
\begin{equation*}
E_{\mathrm{e} 1}=2 \sum_{\mathrm{occ}}\left(E_{r}-\varepsilon\right) \quad\left(E_{\mathrm{e} 1}<0\right), \tag{4}
\end{equation*}
$$

or in analogy to Eq. (2),

$$
\begin{equation*}
E_{\mathrm{e} 1}=2 \int^{E_{\mathrm{F}}}(E-\varepsilon) \varrho(E) \mathrm{d} E, \tag{5}
\end{equation*}
$$

E_{F} being the Fermi energy. Of course, energy of an infinite crystal is infinite. Hence, the energy (5) should be related to an appropriate unit, e.g. to one atom. The validity of the one-electron approximation (4), (5) was discussed by many authors ${ }^{1,17,18}$; despite of severe simplifications, it is still quite successful especially when the energy difference $\Delta E_{\text {el }}$ between two similar structures is treated. To obtain the total energy, a pair potential describing repulsion between constituent atoms should be added ${ }^{12}$.

That is why a higher absolute value of $E_{c l}$ is necessary but not sufficient for the stabilization of the corresponding structure. Nevertheless, an essential gain in $E_{\text {e }}$ points to an instability or at least to a softening (reduction of some force constants) of the original configuration.

Let us consider $\Delta E_{\mathrm{e} 1}$ as a function of E_{F} (or as a function of the electron occupation number N_{e}), and denote the corresponding difference of the electronic state densities as $\Delta \varrho$. Clearly, the (F, f)-theorem applies to the $\left(\Delta E_{\mathrm{el}}, \Delta \varrho\right)$ pair and the number of sign changes of $\Delta E_{\mathrm{c}!}$ can be estimated from below. The experience shows ${ }^{10,11}$ that in simple situations this estimate gives the exact number of the sign changes.

RESULTS AND DISCUSSION

It is obvious that a simplified theory remains valid only under appropriate assumptions. Here, three constraints (A, B, C) are imposed:
A. Changing, if necessary, the energy zero, we suppose $m_{1}=0$. We assume that the energy spectrum of \mathbf{h} is invariant with respect to the transformation $E \rightarrow-E$. This property is typical for alternant hydrocarbons ${ }^{1,6}$. An equivalent condition reads $m_{2 n+1}=0, n=0,1, \ldots$. The latter relation is fulfilled approximately in the d-band models of the transition metal crystals where the odd moments are much smaller than the even ones (cf. also ref. ${ }^{10}$).

It is convenient to change slightly the notation, denoting the "bonding" energy levels as E_{r},

$$
\begin{equation*}
0>E_{1}>E_{2} \ldots>E_{N} . \tag{6}
\end{equation*}
$$

For the "antibonding" levels $E_{r}^{*}>0$, one has $E_{r}^{*}=-E_{r}$. For Hamiltonians with an odd number of eigenvalues, there is always a level $E_{0}=0$. It remains unperturbed due to the restriction A and can be ignored ${ }^{6}$. We disregard a possible energy degeneracy as well, supposing that the complications it causes can be handled by group--theoretical methods.
B. We suppose that the electronic energy band (the set of energy levels) is approximately half-filled ($E_{F} \approx 0$). By using the (F, f)-theorem, this condition will be partly released in the course of the following discussion.
C. We postulate that the energy level E_{1} is the most important one. Explicitly, we assume that from the change ΔE_{1} of E_{1}, one can conclude on the influence of a small perturbation on the stability. An analogous assumption supported by the 2 nd-order perturbation theory is, in fact, used in the theory of the pseudo-Jahn-Teller effect ${ }^{2}$, frontier orbital theory ${ }^{19}$, in the theory of Peierls instability ${ }^{19}$, Fermi surface nesting and Kohn anomalies ${ }^{17}$, in the Stoner criterion of ferromagnetism ${ }^{11}$, etc. Modifications of the condition C are admissible in our approach, e.g., one can assume that the perturbations $\left|\Delta E_{r}\right|$ decrease with increasing r. Nevertheless, it is possible to
construct simple ad hoc examples for which a low-order moment analysis is misleading. Hence, a kind of restriction similar to the assumption C is indispensable.

Together with the original structure, let us consider its perturbed form with energies $E_{r}^{\prime}=E_{r}+\Delta E_{r}, E_{r}^{* \prime}=-E_{r}^{\prime}$. According to the assumption C, the sign and magnitude of ΔE_{1} are decisive. First, let us express the moment changes $\Delta m_{2 k}$ as functions of ΔE_{r}. From Eq. (1) and the assumption A one finds in the approximation linear in ΔE_{r} (the notation (6) is used)

$$
\begin{equation*}
-(4 k)^{-1} \Delta m_{2 k}=\sum_{r}-E_{r}^{2 k-1} \Delta E_{r}, \quad k=1, \ldots, N . \tag{7}
\end{equation*}
$$

In the matrix form,

$$
\begin{equation*}
\boldsymbol{X} \Delta \boldsymbol{E}=\boldsymbol{M}, \tag{8}
\end{equation*}
$$

where \boldsymbol{X} is the $(N \times N)$ matrix with elements $X_{r s}=-E_{s}^{2 r-1}>0$ and $\Delta \boldsymbol{E}, \boldsymbol{M}$ are column vectors with components ΔE_{s} and $-(4 k)^{-1} \Delta m_{2 k}$, respectively. The matrix X belongs to the class of so-called generalized Vandermond matrices ${ }^{20}$. According to results of ref. ${ }^{20}$, the determinant and all the minors $x_{r s}$ of X are positive. By solving the set of linear equations (8) using the Kramer rule, the contribution to ΔE_{1} due to $\Delta m_{2 k}$ is

$$
\begin{equation*}
-\Delta m_{2 k}(-1)^{k+1} x_{k 1}(4 k \operatorname{det} X)^{-1} . \tag{9}
\end{equation*}
$$

For $2 k=4 n+2$, the contribution is negative (stabilizing) if $\Delta m_{4 n+2}>0$. The situation is reversed for $2 k=4 n$. In other words, an increase of $m_{4 n+2}$ (a decrease of $m_{4 n}$) is energetically favourable. Usually, the contribution from low order moments is most important. Only when there is no or small change of $m_{2 k}$, the analysis of $m_{2 k+2}$ is justified.

Accepting once that the signs of ΔE_{1} and $\Delta E_{\mathrm{c} 1}$ are the same, the (F, f)-theorem may be used. Let us apply it in two special cases ($F=\Delta E_{\mathrm{e} 1}, f=\Delta \varrho$). First, let us suppose $\Delta m_{0}=\Delta m_{1}=0, \Delta m_{2}>0$. We find an energy gain for a system with a half--filled spectrum and no change is expected when the electron occupation varies. This conclusion agrees with results of previous investigations. If $\Delta m_{k}=0, k=0-3$, $\Delta m_{4}>0$, a destabilization is predicted for $E_{F} \approx 0$. However, $E_{\mathrm{e} 1}$ changes its sign (at least) twice and the m_{4}-criterion should be reversed for systems with almost empty or almost filled electronic levels.

To illustrate the above theory, several simple examples are considered:
Example 1. The Hückel rule. According to this rule ${ }^{1.4},(4 n+2)$-membered rings $\mathrm{R}_{4 n+2}$ are more stable than $\mathrm{R}_{4 n}$. Let us find the moments for the corresponding Hückel Hamiltonians. When comparing molecules with different number of atoms, values of extensive quantities per one atom are to be introduced. Defining $\mu_{k}\left(R_{m}\right)=$ $=m_{k}\left(\mathrm{R}_{m}\right) / m$, we obtain $\mu_{k}\left(\mathrm{R}_{4 n+2}\right)=\mu_{k}\left(\mathrm{R}_{4 n}\right), k=0, \ldots, 4 n-1$. However, $\mu_{4 n}$ is
higher for $\mathrm{R}_{4 n}$ due to contributions of the $h_{12} h_{23} \ldots h_{4 n 1}$-type, suggesting its lower stability.

Example 2. Branching and bond energy in acyclic carbon chains. As it is shown in refs ${ }^{4.6}$, the bond energy decreases with branching. Let us consider the simple example shown in Fig. 1. The direct evaluation gives for the Hückel matrices $m_{0}=4$, $m_{1}=m_{3}=0, m_{2}=6 \beta^{2}$ in either case. m_{4} is higher for the branched form ($18 \beta^{4}$) than for the linear one $\left(12 \beta^{4}\right)$. The higher value of m_{4} is caused by the atom at the branching site. The situation is very same for more complicated branched structures.

Example 3. Continuous fraction termination. In surface physics problems, the moments are lower due to a reduced coordination at the surface. Usually, the continuous fraction expansion for energy is terminated ${ }^{8,9,15}$ by using bulk values of moments after several steps. This approximation results in an overestimation or underestimation of energy ${ }^{15}$ consistent with the rules formulated above.

Example 4. The $\mathrm{W}(001)$ face reconstruction. Stability of possible surface structures utilizing the value of m_{4} is discussed in ref. ${ }^{14}$. The results of the present paper give another justification of this approach.

Example 5. Ordering in transition metal alloys. Consider a paramagnetic transition metal alloy $\mathrm{A}_{1-x} \mathrm{~B}_{x}$. According to literature ${ }^{21}$, the electronegativity difference together with d-band filling are crucial for the ordering. Let us consider the following simple Hamiltonian respecting this opinion: Interactions between d-orbitals on the nearest-neighbour lattice sites i, j are described by (5×5) matrices $\boldsymbol{h}_{i j}, \boldsymbol{h}_{j i}=\boldsymbol{h}_{i j}^{+}$, regardless of the type (A or B) of atoms at sites i and j. The on-site Coulomb integrals for atom A or B are (5×5) matrices $\alpha_{A} E$ and $\alpha_{B} E$, respectively (E is the unit matrix). From the condition $m_{1}=0, \alpha_{A} \alpha_{B}<0$ follows. The disordering process can be viewed as the reaction

$$
\begin{equation*}
2(\mathrm{~A}-\mathrm{B}) \rightarrow(\mathrm{A}-\mathrm{A})+(\mathrm{B}-\mathrm{B}) \tag{A}
\end{equation*}
$$

taking place for some ordered nearest-neighbour pairs $\mathrm{A}-\mathrm{B}$. For the rearangement $(A), \Delta m_{k}=0, k=0-3$, whereas $m_{4}(2(\mathrm{~A}-\mathrm{B}))-m_{4}(\mathrm{~A}-\mathrm{A})-m_{4}(\mathrm{~B}-\mathrm{B})=2\left(2 \alpha_{\mathrm{A}} \alpha_{\mathrm{B}}-\right.$ $\left.\alpha_{\mathrm{A}}^{2}-\alpha_{\mathrm{B}}^{2}\right) \operatorname{Tr}\left(\boldsymbol{h}_{i j} \boldsymbol{h}_{i j}^{+}+\boldsymbol{h}_{i j}^{+} \boldsymbol{h}_{i j}\right)<0$ (the products of the matrices in parentheses are

Fig. 1
Two structures considered in Example 2
positively semidefinite). Hence, we predict the ordered phase formation for alloys with roughly half-filled d-band ${ }^{11,21}$.

Example 6. m_{4} and phase stability. For transition metal crystals, this question was considered in ref. ${ }^{10}$.

Note added in proof: The recent review article ${ }^{22}$ presents useful ideas and examples complementary to those considered above.

REFERENCES

1. Murrell J. N., Kettle S. F. A., Tedder J. M.: Valence Theory. Wiley, London 1965.
2. Pearson R. G.: Symmetry Rules for Chemical Reactions: Orbital Topology and Elementary Processes. Wiley, New York 1976.
3. Landau L. D., Lifshitz E. M.: Statistical Physics. Addison-Wesley, Reading 1969 (transl. from Russian, Nauka, Moscow 1964).
4. Gutman I., Trinajstić N.: Chem. Phys. Lett. 17, 535 (1972); 20, 257 (1973).
5. Abell G. C.: Chem. Phys. Lett. 101, 452 (1983)
6. Jiang Y., Tang A., Hoffmann R.: Theor, Chim. Acta 66, 183 (1984).
7. Rouvray D. H.: Sci. Am. 255, 36 (September 1986).
8. Heine V.: Solid State Phys. 35, 1 (1980).
9. Haydock R.: Solid State Phys. 35, 216 (1980).
10. Ducastelle F., Cyrot-Lackmann F.: J. Phys. Chem. Solids 32, 285 (1971).
11. Heine V., Samson J. H.: J. Phys., F 13, 2155 (1983).
12. Desjonquères M. C., Spanjaard D.: J. Phys., C 16, 3389 (1983).
13. Panciř J.: Private communication.
14. Pick Š.: Collect. Czech. Chem. Commun. 53, 661 (1988).
15. Pick Š.: Czech. J. Phys., B 37, 777 (1987) and unpublished results.
16. Heine V., Samson J. H.: J. Phys., F 10, 2609 (1980).
17. Friedel J. in: The Physics of Metals I. Electrons (J. Ziman, Ed.), Chap. 8. University Press, Cambridge 1961.
18. Varma C. M., Wilson A. J.: Phys. Rev. B 22, 3795 (1980).
19. Burdett J. K.: Adv. Chem. Phys. 49, 47 (1982).
20. Gantmacher F. R., Krein M. G.: Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Chap. 2, §3. Akademie Verlag, Berlin 1960 (transl. from Russian, GITTL, Moscow 1950).
21. Pettifor D. G.: Phys. Rev. Lett. 42, 846 (1979).
22. Burdett J. K.: Structure and Bonding 65, 30 (1987).

Translated by the author.

